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ABSTRACT 1 

 2 

By considering the intensity, duration and frequency of tropical cyclones, the Power 3 

Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE) are concise metrics 4 

routinely used to assess tropical storm activity. This study focuses on the development of 5 

a hybrid statistical-dynamical seasonal forecasting system for North Atlantic PDI and 6 

ACE over the period 1982-2011. The statistical model uses only tropical Atlantic and 7 

tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the 8 

observational record, reflecting the role of both local and non-local effects on the genesis 9 

and development of tropical cyclones in the North Atlantic basin. SSTs are predicted 10 

using a ten-member ensemble of the Geophysical Fluid Dynamics Laboratory (GFDL)-11 

CM2.1 experimental dynamical seasonal-to-interannual prediction system. To assess 12 

prediction skill, a set of retrospective predictions is initialized for each month November-13 

February, over the years 1981-2012. The skill assessment indicates that it is possible to 14 

make skillful predictions of ACE and PDI starting from November of the previous year: 15 

skillful predictions of the seasonally integrated North Atlantic tropical cyclone activity 16 

for the coming season could be made even while the current one is still underway. 17 

Probabilistic predictions for the upcoming 2012 North Atlantic tropical cyclone season 18 

are presented. 19 

20 



 3 

1. Introduction 1 

The seasonal forecast of North Atlantic tropical cyclone activity has been the subject 2 

of intense scientific investigation (consult Camargo et al. (2007) for a review). The 3 

capability of performing skillful forecasts has important social and economic 4 

repercussions, but also represents a way of testing our understanding of the physical 5 

processes responsible for the genesis, development and tracking of these events. Seasonal 6 

forecasts for the North Atlantic basin date back almost three decades, starting with the 7 

work by Gray (Gray 1984a, b). 8 

Ever since the 1980s, different techniques have been proposed and developed to 9 

forecast tropical cyclone activity. Broadly speaking, one can consider two main 10 

approaches to the seasonal forecast of tropical cyclones: one in which dynamical models 11 

are used directly to forecast the tropical cyclone activity (e.g., Vitart 2006; Vitart et al. 12 

2007; LaRow et al. 2010; Smith et al. 2010; Zhao et al. 2010; Alessandri et al. 2011; 13 

Chen and Lin 2011), and one in which statistical models are developed to connect the 14 

future state of North Atlantic hurricane activity to predictors based on the past and 15 

present state of climate (e.g., Elsner and Jagger 2006; Klotzbach and Gray 2009; Wang et 16 

al. 2009). As an intermediate approach in this broad classification, one can consider 17 

hybrid dynamical-statistical models, in which a statistical model, built either on observed 18 

relationships (e.g., Kim and Webster 2010) or on the sensitivity of tropical cyclones in 19 

high resolution dynamical model experiments covering a wide range of climate states 20 

(e.g., Vecchi et al. 2011; henceforth V11), is applied to the output of dynamical 21 

predictions of the future state of climate. 22 
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Considerable effort has been placed on the seasonal forecast of the number of tropical 1 

cyclones or hurricanes (e.g., Vitart 2006; Vitart et al. 2007; Klotzbach and Gray 2009; 2 

Wang et al. 2009; Kim and Webster 2010; LaRow et al. 2010; Smith et al. 2010; Zhao et 3 

al. 2010; V11; Alessandri et al. 2011; Chen and Lin 2011; Vecchi et al. 2012). In 4 

contrast, other tropical cyclone related quantities, such as the Accumulated Cyclone 5 

Energy (ACE; Camargo and Sobel 2005; Bell and Chelliah 2006) and the Power 6 

Dissipation Index (PDI; Emanuel 2005, 2007), have received much less attention in the 7 

seasonal hurricane prediction literature. These quantities present an integrated view of the 8 

tropical cyclone season, by convolving storm duration, intensity and frequency. The 9 

difference between the two metrics is that the wind speed is squared when computing 10 

ACE, and cubed when computing PDI. In this study, we focus on the seasonal forecast of 11 

ACE and PDI because they provide information not only on the frequency, but also on 12 

the intensity and duration of the storms. The seasonal forecasting system proposed in this 13 

study is a statistical-dynamical hybrid system, whose statistical component is based and 14 

builds on the recent model by Villarini and Vecchi (2012; henceforth VV12) (see Section 15 

2.1 for an overview of the model). 16 

The effort that has gone into building our understanding of seasonal forecasts of North 17 

Atlantic hurricanes has led to multiple techniques showing skill beginning from April for 18 

the North Atlantic tropical cyclone season peaking in August-October (e.g., Elsner and 19 

Jagger 2006; Vitart 2006; Vitart et al. 2007; Wang et al. 2009; LaRow et al. 2010; Zhao 20 

et al. 2010; Chen and Lin 2011). However, forecasts at longer leads remain a 21 

considerable challenge. For example, the group at Colorado State University led by 22 

Klotzbach and Gray issued a note on 7 December 2011 stating: “We are discontinuing 23 
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our early December quantitative hurricane forecast for the next year and giving a more 1 

qualitative discussion of the factors which will determine next year’s Atlantic basin 2 

hurricane activity. Our early December Atlantic basin seasonal hurricane forecasts of the 3 

last 20 years have not shown real-time forecast skill even though the hindcast studies on 4 

which they were based had considerable skill” 5 

(http://hurricane.atmos.colostate.edu/forecasts/2011/dec2011/dec2011.pdf; last accessed: 6 

20 June 2012). This statement seems also to reflect the point of view expressed in AMS 7 

(2000), that seasonal hurricane forecasts since the middle 1980s have shown “modest 8 

forecast skill” when issued in early June and that “these forecasts have diminishing skill 9 

when issued several months before the beginning of the season.” 10 

So, is skillful seasonal forecast of North Atlantic tropical cyclone activity with a 6-9 11 

month lead-time not achievable? V11 argued, based on a suite of retrospective forecasts, 12 

that it may be possible to make skillful forecasts of North Atlantic hurricane activity from 13 

November of the previous year. In this manuscript, we show through a series of 14 

retrospective forecasts that it is also possible to perform skillful forecast of North Atlantic 15 

PDI and ACE from as early as November of the previous year. Taken together, these 16 

results suggest that it would be possible to skillfully forecast the upcoming season even 17 

as the current one is coming to an end. 18 

The paper is organized in the following way. In Section 2 we describe the data and 19 

provide an overview of the statistical framework. Section 3 presents the results of the 20 

analyses, and Section 4 summarizes the main points of the study and concludes the paper. 21 

 22 
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2. Data and Methodology 1 

 2.1 Statistical Model and Covariates 2 

In this study we use the seasonally integrated North Atlantic PDI and ACE values for 3 

the period 1949-2011. The time series for these two indexes are computed from the 4 

National Oceanic and Atmospheric Administrations (NOAA) HURDAT database (e.g., 5 

Jarvinen et al. 1984; MacAdie et al. 2009). The HURDAT database provides the location 6 

(latitude and longitude), minimum pressure and maximum wind speed of the center of 7 

circulation for recorded tropical storms from 1851 to the present. Similar to VV12, we 8 

correct the pre-1970 wind speed values according to Landsea (1993), use wind speed 9 

values only from tropical and subtropical, non-depression (maximum winds > 17ms-1) 10 

stages of the storms, and focus on the 1949-2011 period to limit the impact of data 11 

inhomogeneities. 12 

Let us indicate with Y the seasonally integrated North Atlantic PDI or ACE (PDI is 13 

normalized by a factor 1011 and ACE by a factor 109). Similar to VV12, we can model Y 14 

using a gamma distribution 15 
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in which the location parameter µ is a linear function of tropical Atlantic (SSTAtl) and 17 

tropical mean (SSTTrop) sea surface temperatures (SSTs) (via a logarithmic link function): 18 

( )TropTropAtlAtl SSTSST βββµ ++= 0log  (2) 19 

and σ is constant. The mean is equal to µ, while the variance to µ2σ2. 20 

The selection of these two predictors is supported by physical considerations and 21 

results from dynamical numerical and statistical models (e.g., Shen et al. 2000; Sobel et 22 
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al. 2002; Tang and Neelin 2004; Latif et al. 2007; Vecchi and Soden 2007; Vecchi et al. 1 

2008; Ramsay and Sobel 2011; Villarini et al. 2010, 2011, 2012; V11; VV12). The SST 2 

anomalies are computed with respect to the period 1982- 2005. The SSTAtl anomalies are 3 

computed over the tropical cyclone main development region (10°-25°N and 80°-20°W), 4 

while SSTTrop with respect to the tropical belt 30°S-30°N. We use the NOAA's extended 5 

reconstructed SST dataset (ERSSTv3b; Smith et al. 2008) and averaged over the period 6 

June-November as reference input dataset. As shown in Figure 1 and described in details 7 

in VV12, this parsimonious model is able to describe very well the interannual and 8 

multidecadal variability exhibited by the observational record. 9 

 10 

2.2 Seasonal Forecasts 11 

Similar to V11, we use the forecasts of June-November SSTAtl and SSTTrop obtained 12 

from the NOAA-Geophysical Fluid Dynamics Laboratory (GFDL) experimental 13 

seasonal-to-interannual (S-I) prediction system, which is built on GFDL's Coupled Model 14 

version 2.1 (Delworth et al. 2006) and initialized using the coupled ensemble Kalman 15 

filter scheme of Zhang et al. (2007). The GFDL-CM2.1 forecasts consist of a set of 16 

retrospective predictions initialized over the period November 1981-February 2012, each 17 

with a 10-member ensemble initialized from the first day of every month with an 18 

integration of 12 months. 19 

The model presented in the previous subsection (gamma distribution with µ that is a 20 

function of the two predictors and constant σ) provides the structure for our seasonal 21 

forecasting system. For the retrospective forecasts, the values of the coefficients β0, βAtl, 22 

and βTrop (equation 2), and σ, however, are not constant over the entire period, but are 23 
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recomputed from year to year as new information become available over the forecast 1 

period 1982-2011. For instance, the seasonal forecast for the 1982 season is based on 2 

SST forecasts for 1982 and the model's parameters estimated using PDI and ACE data as 3 

well as ERSSTv3b SST data from 1949 to 1980. Similarly, the seasonal forecast for 1983 4 

is based on SST forecasts 1983 and the model's parameters estimated using PDI, ACE, 5 

and ERSSTv3b from 1949 to 1981. We repeat this for every year from 1982 to 2011. We 6 

do not use, for instance, the coefficients estimated including the information for 1981 to 7 

forecast the 1982 activity because the final “best track” values (including post-season 8 

adjustments) for the 1981 season would not have been available in late-1981 and early-9 

1982. As a sensitivity test, we also perform retrospective forecasts training the statistical 10 

model on the entire data record – although this is not a true retrospective forecast, as it 11 

requires “future” information (i.e., the full 1949-2011 record was not available until 12 

2012). 13 

Examination of the time series of the model's coefficients highlights some interesting 14 

features (Figure 2). We can clearly see two main regimes, pre-1995 and post-1995, in 15 

both PDI and ACE. In the pre-1995 period, the coefficient for SSTAtl is smaller (in 16 

magnitude) than the corresponding SSTTrop coefficient. This points to a reduced North 17 

Atlantic tropical cyclone activity over this period. After 1995, on the other hand, we 18 

observe an abrupt shift, with the SSTAtl coefficient becoming larger (in magnitude) than 19 

the corresponding SSTTrop, pointing to a heighten tropical cyclone activity. Not only do 20 

we observe an increase in PDI and ACE magnitude as a consequence of the changes in 21 

the beta coefficients, but we also have a similar abrupt change in σ, indicating an increase 22 

in variability. That 1995 emerges as a change point is coincident with the abrupt change 23 
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in hurricane activity that occurred in 1995 (e.g., Elsner et al. 2004; Li and Lund 2012), 1 

which was connected to changes in the state of the northern Atlantic Ocean that had 2 

wide-ranging impacts (e.g., Knight et al. 2004; Sutton and Hodson 2005; Zhang and 3 

Delworth 2006). Predicting these abrupt shifts in the future will be important to 4 

improving our seasonal and long-lead forecast of North Atlantic tropical cyclone activity 5 

(Smith et al. 2010; Vecchi et al. 2012). It appears that this abrupt shift revealed statistical 6 

relationships between SST and PDI/ACE that the shorter record did not. This shift in the 7 

character of the statistical model highlights the difficulties inherent in training models on 8 

finite datasets: as the record lengthened, the underlying relationships between the 9 

predictors and predictand were refined. At the present time, it is unclear what physical 10 

mechanisms were behind this abrupt change in the statistical model parameters, but the 11 

1994-1995 climate shift in the Atlantic revealed a stronger role for Atlantic SSTs in 12 

controlling hurricane activity than one would have inferred from prior data. A question 13 

that, unfortunately, we cannot answer at this stage is whether the fit of PDI and ACE to 14 

the SST predictors has converged, or if future shifts in the climate system will result in 15 

further refinement of the model. 16 

For the seasonal forecasts initialized in February, March, and April, we consider an 17 

additional model configuration. It may be reasonable to expect that by February the “best 18 

track” PDI and ACE values from the season that has just ended would be available, and 19 

one could use these values to compute the most recent set of model's coefficients. 20 

Therefore, for instance, if one wanted to forecast the PDI and ACE values for 1982, one 21 

could use the coefficients estimated using all the information up to 1981, instead of being 22 

restricted to the 1949-1980 period. We will show that, by adding this additional piece of 23 
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information, the forecasting PDI and ACE from February, March, and April nominally 1 

increases. 2 

The approach we follow is similar to the “retroactive validation” discussed in Mason 3 

and Baddour (2007) (see also Villarini and Serinaldi (2012)), and differs from the 4 

common “calibration-validation approach.” In our case, the forecast method over the 5 

validation period is heterogeneous, because the statistical model from which these values 6 

are obtained is not fitted over a fixed period, but over a changing one. This approach, 7 

however, results from using the additional information that becomes available from year 8 

to year, and has been already used in other studies and disciplines (e.g., Weron 2006; 9 

Villarini and Serinaldi 2012). 10 

The evaluation of the forecast quality is based on visual examination of the 11 

probabilistic forecasts. We use the median as our best estimate and the forecast accuracy 12 

is quantified using four metrics: Pearson correlation coefficient, Spearman correlation 13 

coefficient, the root mean squared error (RMSE) and the mean absolute error (MAE) 14 

(e.g., Wilks 2006; Hyndman and Koehler 2006). The first two metrics quantify the degree 15 

of agreement between observations and forecasts. The Pearson correlation coefficient 16 

quantifies the degree of linear dependence between observations and forecasts. If we 17 

indicate the observations with O and the forecasts with F, it is computed as the 18 

covariance between O and F normalized by the product of the standard deviation of O 19 

and F. The Spearman correlation coefficient can be considered the non-parametric 20 

counterpart of the Pearson correlation coefficient, and is equivalent to computing the 21 

Pearson correlation coefficient on the ranked observations and forecasts. Therefore, 22 

Spearman correlation coefficient is less sensitive to outliers and quantifies the degree of 23 
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monotonic dependence between O and F. The use of MAE and RMSE aims at 1 

quantifying the discrepancies between observations and forecasts, with the latter 2 

penalizing more the large discrepancies (e.g., Hyndman and Koehler 2006). 3 

 4 

3. Results 5 

We use the parsimonious statistical model discussed in the previous section to perform 6 

retrospective forecast for every year from 1982 to 2011. Figures 3 and 4 show the results 7 

for ACE and PDI for different initialization months (description of the retrospective 8 

forecast skill for the two SST predictors is presented in V11). The models we have 9 

developed are able to describe the interannual variability exhibited by the data as early as 10 

November, indicating that it is possible to make skillful forecasts of North Atlantic PDI 11 

and ACE as early as November of the previous year. The November forecast (7-month 12 

lead time for a tropical cyclone season starting in July) is able to capture the observed 13 

alternation of quieter and more active periods. As the lead-time decreases, the median 14 

tends to follow more closely the observations, and the forecast distribution tends to better 15 

describe the data. The agreement between median forecasts and observations tends to 16 

increase going from November to January-February, likely due to an improvement in the 17 

SST forecast (V11). On the other hand, the March and April forecasts tend to be worse 18 

than the previous ones, with decreased inter-annual variability and a poorer agreement 19 

between median forecast and observations. These statements are valid for both ACE and 20 

PDI forecasts. This worsening in the seasonal forecast performance when initialized in 21 

March and April was also noted for hurricane frequency in V11. They found that the 22 

correlation between observation and forecast of tropical Atlantic SST using GFDL-23 
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CM2.1 peaked in January and progressively decreased in February, March and April. The 1 

correlation between observed and forecasted tropical mean SST exhibited a similar 2 

pattern, with the worst agreement in the April forecasts. 3 

Figure 5 summarizes the results regarding the accuracy of the seasonal forecast of 4 

ACE (left panels) and PDI (right panels) using the four metrics described in the previous 5 

section. Consistent with the visual assessment of Figures 3 and 4, we observe an increase 6 

in performance from November to January-February, and then a worsening in March and 7 

April. The MAE for ACE decreases from 2.8 109 m2 s-1 to 2.7 109 m2 s-1 to increase again 8 

to about 3.0 109 m2 s-1 in April. The MAE for PDI shows a similar pattern, with values of 9 

about 1.3 1011 m3 s-2 in November-December, decreasing to about 1.23 1011 m3 s-2 in 10 

January and February, and increasing again reaching 1.4 1011 m3 s-2 in April. The RMSE 11 

values are larger than the corresponding MAE values because of the increased influence 12 

of discrepancies at the extremes, and the skewed distribution of ACE and PDI. Both 13 

measures of error are smaller than the observed standard deviations of 3.8 109 m2 s-1 and 14 

1.8 1011 m3 s-2 for ACE and PDI, respectively. 15 

The results obtained by using the correlation coefficients indicate that this 16 

experimental seasonal forecasting system was able to reproduce well the observational 17 

record. The Pearson correlation coefficient is about 0.5 for forecasts initialized in 18 

November and December, peaking at 0.6 in January and February, and decreases down to 19 

0.5 in March and April. The results are similar for both PDI and ACE. The results 20 

obtained by using the Spearman correlation coefficient are less dependent on the 21 

initialization month. The values for ACE are on the order of 0.55, with the exception of 22 

the January forecast, which peaks at about 0.65. The results for PDI are slightly larger, 23 
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with values on the order 0.58 for all the initialization months, except for January, in 1 

which the correlation coefficient peaks at 0.66. The slight differences between Pearson 2 

and Spearman correlation coefficients can be due to the fact that the latter works on ranks 3 

rather than on the numerical values of the forecasts and observations. 4 

As mentioned before, we have also examined the improvement in the forecasts 5 

initialized in February to April associated with the use of the most recent PDI, ACE, and 6 

SST values. Overall, the February forecasts are now more accurate than the January ones, 7 

exhibiting the smallest MAE and RMSE values and the largest Pearson correlation 8 

coefficients (the largest Spearman correlation coefficients are still in January). The use of 9 

this additional information results in an overall improvement in the March and April 10 

forecasts as well. 11 

We have also used the seasonal forecasting system presented in this study to make 12 

forecasts for the upcoming 2012 hurricane season (Figure 6, Table 1). Neither the 13 

November nor December 2011 forecasts suggested that the 2012 season will be 14 

particularly active. According to the ACE forecast, there is an 11.4% probability of 15 

having a season exceeding the 1980-2010 mean based on the November forecast, and a 16 

slightly larger probability according to the December forecast (17.7%). The results for 17 

PDI are similar, with a probability of 10.3% (16.2%) of having a season more active than 18 

the 1980-2010 mean based on the November (December) forecasts. On the other hand, 19 

based on the forecasts initialized in January and February, the 2012 season is forecasted 20 

to be about as active as the 1980-2010 mean. The probability of having a season more 21 

active than the mean 1995-2010 period is smaller than for the 1980-2010 period, but still 22 

increasingly larger going from the November to the February forecasts (Table 1). The 23 
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increase in forecasted activity with reduced lead-time is due to the forecast of SST, with 1 

forecasts for the Atlantic Ocean warming to lag that of the rest of the tropics by less. 2 

Based on the results in Figure 5, the retrospective 1982-2011 January and February 3 

forecasts were generally more accurate than the November-December ones – but the 4 

differences are not statistically significant. It will be interesting to check at the end of the 5 

2012 season how well this forecast system will have performed. 6 

 7 

4. Conclusions 8 

In this study, we have proposed and developed a hybrid statistical-dynamical 9 

forecasting system of North Atlantic tropical cyclone activity, targeting the seasonally 10 

integrated PDI and ACE values. Predictions of these two indices complement forecasts of 11 

the number of storms by also providing information on intensity and duration. Our 12 

system builds on VV12 and describes the PDI and ACE time series with a gamma 13 

distribution, in which the logarithm of the location parameter depends linearly on tropical 14 

Atlantic and tropical mean SSTs, while the scale parameter is constant. We use the 15 

GFDL-CM2.1 experimental seasonal-to-interannual forecast system (Delworth et al. 16 

2006; Zhang et al. 2007; V11) to obtain the input predictors as early as November of the 17 

year prior to the season we want to forecast. We used four different metrics (RMSE, 18 

MAE, Pearson and Spearman correlation coefficients) to assess the forecast accuracy. 19 

By performing retroactive validation (Mason and Baddour 2007), we showed that it is 20 

possible to make skillful forecasts of PDI and ACE starting from November of the 21 

previous year. This means that there is potential for skillful forecasts of the seasonally 22 
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integrated North Atlantic tropical cyclone activity for the coming season while the 1 

current one is still underway.  2 

Using this system, we have provided ACE and PDI forecasts for the 2012 season. 3 

Based on our results, the 2012 tropical cyclone season is not forecasted to be particularly 4 

active, even though the January and February 2012 forecasts indicate that it will be less 5 

inactive than what the November-December 2011 forecasts suggested. 6 

There are several different possible venues to improve upon this system. In this study, 7 

we focused on the SST forecasts from the GFDL-CM2.1. In the future, however, it would 8 

be possible to include SST forecasts from research centers around the world that already 9 

routinely perform SST forecasts. Based on the results of V11, it is likely that a multi-10 

model ensemble approach would lead to an increase in the long-lead skill. Another venue 11 

for future research is the application of this statistical model to decadal projections of 12 

North Atlantic tropical cyclone activity. Smith et al. (2010) and Vecchi et al. (2012) 13 

showed that there is potential skill in multi-year predictions of hurricane frequency. 14 

Experiments are underway to assess the feasibility of multi-year to decadal forecasts of 15 

PDI and ACE using the GFDL CM2.1 experimental decadal forecast system (Rosati et al. 16 

2012; Yang et al. 2012; Vecchi et al. 2012) and the suite of Fifth Coupled Model 17 

Intercomparison Project (CMIP5) initialized decadal forecast experiments (Taylor et al. 18 

2012). The results of this study, together with those in Smith et al. (2010) and Vecchi et 19 

al. (2012) indicate that there is hope in achieving skillful multi-year predictions of ACE 20 

and PDI by considering both radiatively-forced and internal components of multi-year 21 

hurricane activity changes. 22 

 23 
 24 
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FIG. 1. Results of the statistical modeling of ACE (top panel) and PDI (bottom panel) 3 

over the period 1949-2011. These results are based on fitting the observational record 4 

(corrected according to Landsea (1993); black circles) using a gamma distribution in 5 

which the location parameter µ is a linear function of SSTAtl and SSTTrop (via a 6 

logarithmic link function) and constant scale parameter σ. The SST data are based on 7 

ERSSTv3b data. The white line represents the median (50th percentile); the light grey 8 

area represents the region between the 5th and 95th percentiles, while the dark grey area 9 

the region between the 25th and 75th percentiles. 10 

 11 

FIG. 2. Time series of the model coefficients for the location parameter µ (equation 2) and 12 

scale parameter σ over the period 1980-2011 for ACE (black line) and PDI (grey line). 13 

 14 

FIG. 3. Seasonal forecast of ACE initialized from November of the year prior to the one 15 

to forecast to April (same year as the one to forecast). The black circles represent the 16 

observations. The white line represents the median (50th percentile); the light grey area 17 

represents the region between the 5th and 95th percentiles, while the dark grey area the 18 

region between the 25th and 75th percentiles. The hatched regions represent the forecasted 19 

period. 20 

 21 

FIG. 4. Same as Figure 3 but for the PDI. 22 

 23 

FIG. 5. Summary of the accuracy of the seasonal forecast of ACE (left panels) and PDI 24 

(right panels) for different initialization months. The metrics used are MAE, RMSE, 25 

Person and Spearman correlation coefficients. The grey horizontal line (“Most complete 26 

mode”) represents the results obtained by using the median from Figure 1 as reference 27 



 26 

value. The black lines and grey circles represent the results using the medians from 1 

Figures 3 and 4. The black lines and squares represent the results for the model 2 

configuration using the coefficients of the statistical model estimated using all the 3 

information available for that year, and the SST forecast for the upcoming year. 4 

 5 

FIG. 6. Seasonal forecast of ACE (top panel) and PDI (bottom panel) initialized in 6 

November and December 2011, and January and February 2012. The limits of the boxes 7 

represent the 25th and 75th percentiles, while the whiskers the 10th and 90th percentiles. 8 

The line and the square within the box represent the median and mean values, 9 

respectively. The ACE and PDI values averaged over the periods 1980-2010 (solid grey 10 

line) and 1995-2010 (dashed grey line) are included as reference. 11 
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TABLE 1. Summary of the probabilities of having a 2012 season more active than the 1 

1980-2010 and 1995-2010 means for PDI and ACE and different initialization months. 2 

 3 

 November December January February 

Probability of 2012 season more active 

than 1980-2010 mean (ACE) 

11.4% 17.7% 29.1% 44.3% 

Probability of 2012 season more active 

than 1995-2010 mean (ACE) 

4.9% 7.8% 14.0% 28.7% 

Probability of 2012 season more active 

than 1980-2010 mean (PDI) 

10.3% 16.2% 27.0% 42.3% 

Probability of 2012 season more active 

than 1995-2010 mean (PDI) 

4.7% 7.4% 13.5% 28.4% 

 4 
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 1 

FIG. 1. Results of the statistical modeling of ACE (top panel) and PDI (bottom panel) 2 

over the period 1949-2011. These results are based on fitting the observational record 3 

(corrected according to Landsea (1993); black circles) using a gamma distribution in 4 

which the location parameter µ is a linear function of SSTAtl and SSTTrop (via a 5 

logarithmic link function) and constant scale parameter σ. The SST data are based on 6 

ERSSTv3b data. The white line represents the median (50th percentile); the light grey 7 

area represents the region between the 5th and 95th percentiles, while the dark grey area 8 

the region between the 25th and 75th percentiles. 9 

10 
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 1 

FIG. 2. Time series of the model coefficients for the location parameter µ (equation 2) and 2 

scale parameter σ over the period 1980-2011 for ACE (black line) and PDI (grey line). 3 
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 1 

FIG. 3. Seasonal forecast of ACE initialized from November of the year prior to the one 2 

to forecast to April (same year as the one to forecast). The black circles represent the 3 



 31 

observations. The white line represents the median (50th percentile); the light grey area 1 

represents the region between the 5th and 95th percentiles, while the dark grey area the 2 

region between the 25th and 75th percentiles. The hatched regions represent the forecasted 3 

period. 4 
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FIG. 4. Same as Figure 3 but for the PDI. 2 
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FIG. 5. Summary of the accuracy of the seasonal forecast of ACE (left panels) and PDI 1 

(right panels) for different initialization months. The metrics used are MAE, RMSE, 2 

Person and Spearman correlation coefficients. The grey horizontal line (“Most complete 3 

mode”) represents the results obtained by using the median from Figure 1 as reference 4 

value. The black lines and grey circles represent the results using the medians from 5 

Figures 3 and 4. The black lines and squares represent the results for the model 6 

configuration using the coefficients of the statistical model estimated using all the 7 

information available for that year, and the SST forecast for the upcoming year. 8 
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FIG. 6. Seasonal forecast of ACE (top panel) and PDI (bottom panel) initialized in 1 

November and December 2011, and January and February 2012. The limits of the boxes 2 

represent the 25th and 75th percentiles, while the whiskers the 10th and 90th percentiles. 3 

The line and the square within the box represent the median and mean values, 4 

respectively. The ACE and PDI values averaged over the periods 1980-2010 (solid grey 5 

line) and 1995-2010 (dashed grey line) are included as reference. 6 


